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Abstract

This paper considers the flow of a liquid film sheared by gas flow in a channel with a heater placed at the bottom wall. A one-sided 2D
model is considered for weakly heated films. The heat and mass transfer problem is also investigated in the framework of a two-sided
model. The exact solution to the problem of heat transfer is obtained for a linear velocity profile. The double effect of Marangoni forces is
demonstrated by the formation of a liquid bump in the vicinity of the heater’s upper edge and film thinning in the vicinity of the lower
edge. The criterion determining the occurrence of ‘‘ripples” on the film surface upstream from the bump is found. Numerical analysis
reveals that evaporation dramatically changes the temperature distribution, and hence, thermocapillary forces on the gas–liquid inter-
face. All transport phenomena (convection to liquid and gas, evaporation) are found to be important for relatively thin films, and
the thermal entry length is a determining factor for heaters of finite length. The thermal entry length depends on film thickness, which
can be regulated by gas flow rate or channel height. The influence of the convective heat transfer mechanism is much more prominent for
relatively high values of the liquid Reynolds number. The liquid–gas interface Biot number is shown to be a sectional-hyperbolic function
of a longitudinal axis variable. Some qualitative and quantitative comparisons with experimental results are presented.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Shear-induced flows of liquid films, caused by different
shear forces, are important for several technological inno-
vations for ground and space applications. This paper
investigates liquid films driven by the action of gas flow
in a microchannel with a local heater. A variety of impor-
tant phenomena can be observed in this physical process,
such as the formation of waves [1,2], capillary, solutocapil-
lary and thermocapillary patterns [3,4], and microscopic
peculiarities [5,6]. One of the promising applications of
shear-driven liquid films is the cooling of microelectronic
components [7,8]. The heat flux densities in these compo-
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nents may be as high as 300 W/cm2 [9]. The efficient devices
used to cool microelectronics are based on evaporation.
Thin annular liquid films may provide very high heat trans-
fer intensity, especially in the micro region near the contact
line [5,10].

Thermocapillary convection of a gravity-driven liquid
film on a heated substrate has been extensively studied over
the last several decades. Several theoretical models have
been proposed that are capable of describing a gravity-dri-
ven liquid film with local heating at the substrate [11–13].
Frank [14] performed a direct three-dimensional non-linear
simulation of the flows in a locally heated film using the
particle method, and the numerical results were in agree-
ment with the experimental data. A review of most results
concerning the effect of non-uniform heating on film flow
can be found in the introduction of [15]. However, non-
uniform heating and Marangoni effects have been only par-
tially understood for shear-driven liquid film flows [16,17],
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Nomenclature

a thermal diffusivity coefficient
B channel width
Bi Biot number
Bo Bond number
Bo* associated Bond number
C concentration (kg/m3)
C* equilibrium concentration at the surface of

evaporating liquid (kg/m3)
C0, C1 equilibrium concentration coefficients
C analogue of capillary number
cp specific heat capacity (J/kg K)
D diffusion coefficient (m2/s)
F(X) fundamental solution
f(X) function
g gravity acceleration
H channel height
h film thickness
�h dimensionless film thickness
h1 dimensionless linearized film thickness
L heater length
lr capillary length
M molar mass
m mass concentration
Ma Marangoni number
n natural number
P dimensionless pressure
p pressure
p0, p1 vapor partial pressure at T0, T1

�p characteristic pressure
Pe Peclet number
Pr Prandtl number
Q specific flow rate (m2/s)
q heat flux density (W/cm2)
q0 heat flux density on the heating element (W/

cm2)
R universal gas constant
r heat of vaporization (J/kg)
Re Reynolds number

T temperature (K, �C)
DT characteristic temperature drop (K, �C)
U, V dimensionless velocity components
u, v velocity components in the x and y axes
�u;�v mean velocity components
X, Y dimensionless Cartesian coordinates
x, y Cartesian coordinates
xm point of the onset of heat flux reduction

Greek symbols
a heat transfer coefficient (W/m2 K)
C specific mass flow rate of liquid (kg/ms)
Ce specific mass flow rate of evaporated liquid (kg/

ms)
e ratio of linear film scales
c dimensionless mass flow rate
h dimensionless temperature
�h dimensionless film surface temperature
k thermal conductivity coefficient
l dynamic viscosity
g(X) function = v(X) � v(X � 1)
q density
r liquid surface tension (N/m)
rT surface tension temperature dependent coeffi-

cient (N/m K)
s shear stress at the interface
T dimensionless shear stress
u inclination angle of the channel
v(X) Heaviside function

Subscripts and superscripts

0 initial flow parameters specified at T = T0

a air
g gas phase
I gas–liquid interface
max maximum
v vapor
W bottom wall
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and the influence of the gas phase on the interfacial phe-
nomena remains a challenging issue for modeling.

Most of the papers dealing with the interaction between
evaporation and thermocapillary effects assume that the
liquid is only in contact with its own vapor [18]. While
experimental and theoretical investigations show that the
presence of a non-condensable component in the vapor
phase strongly leads to surface-tension-driven instability
of an evaporating liquid layer [19]. One of the examples
is the ridges and dendritic structure formation due to evap-
orative instability in climbing films reported in [20]. Rossk-
amp et al. [21] conducted experimental investigations of
evaporating shear-driven liquid wall films in hot turbulent
air flow. Mathematical models describing the evaporation
of liquids more often than not deal with the evaporation
of a liquid film in an open space, such as a flat plate in
air [22]. The evaporation of a falling liquid film on an
inclined plate in a laminar stream of humid air has been
studied numerically by Mezaache and Daguenet [23]. They
showed that the enthalpy diffusion term can be neglected in
the heat equation for the gas phase. The heat and mass
transfer involved in the evaporation of a water falling film
in a closed rectangular cavity was recently studied numer-
ically and experimentally by the authors of [24]. To our
knowledge, most theoretical works concerning two-phase
flow have used a 2D formulation. It is worth noting that
Lakehal et al. [25] present the recent trends in the develop-
ment of prediction methods for the direct numerical simu-
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Fig. 1. Sketch of shear-driven liquid film flow in a microchannel with a
local heater.
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lation of multiphase flows based on the one-fluid formalism
coupled with various interface tracking algorithms.

Contrary to gravity-driven isothermal liquid films,
shear-driven films are less likely to breakdown [26], and
yet it is well known that the Marangoni effect has a signif-
icant influence on heat transfer intensity and may lead to
film rupture [27,28]. This provides a way to prevent and
control a hot dry patch formation by the shear stress
induced by gas flow. It is quite evident that the combined
effects of evaporation, thermocapillarity, and gas dynam-
ics, as well as the formation of microscopic adsorbed film,
result in a number of complicated issues and have not yet
been studied systematically. The aim of the present work
is to investigate the film deformations due to Marangoni
forces and to study the effect of evaporation on the
enhancement of heat transfer from a local heater for a
shear-driven liquid film in a microchannel.

We consider two types of models for the heated shear-
driven liquid film. First of them is a one-sided model in
the framework of lubrication approximation when the
evaporation is negligible. The lubrication theory or long-
wave theory has been used in the analysis of many type
of thin liquid film flow [29] arising in a number of industrial
applications including flow of liquids over a heated solid
surfaces. Most of works in this type of studying of a heated
liquid films assume that the convective terms in the energy
equation are negligible and this leads to just one equation
of Benney type for the film thickness [12,29]. However,
for the thermocapillary instability problem of nonuniform-
ly heated gravity-driven liquid film (see the experiments
[4,11]) clearly indicate that the temperature field is con-
vected downstream and is very different from the solution
of simple heat conduction equation. In fact, the Peclet
number in the experiments [4] is O(1) or even larger. The
difference of our model proposed here from the classical
models for nonisothermal liquids in lubrication approxi-
mation [29] is that the convective terms in energy equation
is incorporated into the model and coupled to the equation
for the film thickness. So that the model is valid for Peclet
number O(1) or larger. The second model is developed to
study the evaporation effect on heat transfer in the frame-
work of two-sided model for shear-driven liquid films. The
model includes the energy equations for liquid and gas
phases, and the convection–diffusion equation with the
appropriate boundary conditions. All the equations con-
sider the Peclet numbers O(1) or larger and include the con-
vective terms and expected to be valid for laminar flows in
both the liquid and gas phases (for moderate Reynolds
numbers).

The paper is organized as follows: the problem is
described in Section 2, and a one-sided 2D model is consid-
ered for weakly heated films in Section 3, some results of
this section has been published in Letter [16]. The problems
of heat transfer and thermocapillary deformation are dis-
cussed; evaporation is neglected, with the heat transfer to
the gas phase approximately specified by a constant Biot
number. Section 4 analyzes the evaporation effect on heat
transfer; a quantitative comparison with the experimental
data is made; and finally, the key findings are summarized
in Section 5.
2. Description of the problem

Consider a channel with a rectangular cross section, the
height of which, H, is much less than its width, B. A viscous
incompressible liquid film flows under the action of gas
flow and under the action of gravity when the channel is
inclined at an angle u with respect to the horizontal plane,
as shown in Fig. 1. Suppose there is a local heater on the
bottom wall.

Experimental investigations of isothermal shear-driven
liquid films indicate that for small liquid and gas flow rates,
the film surface is smooth throughout the length of the
channel [30]. Furthermore, the initial section of smooth
film exists even for higher gas/liquid flow rates. Accord-
ingly, this theoretical investigation is considered in the
framework of flow regimes without waves with velocity
profiles for laminar co-current parallel streams, or Couette
flow with a nonzero pressure drop:

uðyÞ ¼ 1
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qg sin u� op

ox
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2
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For a given channel height and liquid and gas Reynolds
numbers, velocity profiles, film thickness, tangential stress
and the drop in pressure can be found by solving the prob-
lem of joint motion of isothermal non-deformable liquid
film and gas flow in the channel:
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Initial film thickness, h0, is found to be the root of the poly-
nomial of degree 5. Here and below initial means the data
for the reference state (i.e. when there is no evaporation,
heating and waves). The results for h0, s, u, ug from this
Section are used in Sections 3 and 4.
3. Films under weak thermal effects

3.1. Formulation

In this section we consider the flow of shear-driven
liquid films under relatively small heat flux densities. This
means that Ma� 1 and the evaporation effect can be
neglected, with the heat transfer to gas approximately spec-
ified by a constant Biot number. We will not discuss the
temperature dependence of the liquid viscosity [31,14] since
we consider only cases of weak heating in this section. The
dynamic influence of gas flow will be modelled by a con-
stant shear stress s, found from the problem of joint
motion of isothermal non-deformable liquid film and gas
flow in the channel (Section 2).

Consider a stationary two-dimensional flow of the
heated liquid film sheared by gas flow. We introduce the
non-dimensional variables:

X ¼ x=L; Y ¼ y=h0; U ¼ u=�u; V ¼ v=�v; �h

¼ h=h0; T ¼ s=s0; h ¼ ðT � T 0Þ=DT ; �h

¼ ðT ðx; hÞ � T 0Þ=DT ; hg ¼ ðT g � T 0Þ=DT ; P

¼ ðp � pgÞ=�p;

where �u ¼ 1
l qg sin u

h2
0

3
þ sh0

2

� �
; �v ¼ e�u; e ¼ h0=L; s0 ¼

l�u=h0; �p ¼ l�u=eh0, and DT = q0L/cpC characterizes the
variation in temperature along the heater.

For a linear velocity profile in the film, the average
velocity of the liquid film is expressed in terms of the
tangential stress as �u = sh0/2l, so the non-dimensional
tangential stress becomes T = s/s0 = 2. Physically, such
situations take place if the channel is normally oriented
to any acting body force. For example, this applies in a
horizontally placed channel in a gravitational field, or
under the complete absence of a body force as would occur
in a non-rotating space vehicle (microgravity conditions).

Ignoring the terms of the order e2 and higher, and
considering inertial terms to be negligible eRe = O(e2),
(assuming the lubrication approximation is valid), we
obtain the non-dimensional formulation. The dimension-
less governing equations are

eUYY � eP X þ
qgh0

�p
sin u ¼ 0; ð3Þ

� P Y �
qgh0

�p
cos u ¼ 0; ð4Þ

UX þ V Y ¼ 0; ð5Þ
ePeðUhX þ V hY Þ ¼ hYY : ð6Þ
The convective terms have to be taken into account
since the Prandtl numbers of some liquids are relatively
large. As an example, 25% ethyl-alcohol water solution
has a Prandtl number of Pr = 22.06 under normal
conditions.

Let us formulate the boundary conditions in non-dimen-
sional forms. The initial temperature is assumed to be

h ¼ 0: ð7Þ

At the bottom wall of the channel, Y = 0, there is a non-
slip condition:

U ¼ V ¼ 0: ð8Þ

The presence of a local heater at the bottom is specified by
a constant heat flux at the heating area. Denoting
g(X) = v(X) � v(X � 1), we write this condition in a non-
dimensional form as follows:

�hY ¼ ePegðX Þ: ð9Þ

We formulate now the boundary condition at the liquid–
gas interface, which is described by its non-dimensional
thickness, �h. The kinematic condition is written as follows:

�hX U ¼ V : ð10Þ

Assume that the surface tension is a linear function of
temperature,

r ¼ r0 � rT ðT � T 0Þ

with r0 > 0, rT > 0 for typical liquids, then the interfacial
stress conditions can be written as

P ¼ �C�1�hXX ; ð11Þ
UY þMa�hX � T ¼ 0: ð12Þ

Ma is the Marangoni number defined as

Ma ¼ erT DT
l�u ;C ¼ �ul

r0
e�3 is an analogue of capillary number,

C ¼ Oð1Þ as e ? 0, which is applied for sufficiently strong
surface-tension effects [29].

The boundary condition for temperature at the interface
is Newton’s cooling law, in which the heat flux normal to
the interface is analogous to the temperature difference
between the interface and the gas phase:

hY ¼ �Biðh� hgÞ; ð13Þ

where Bi = ah0/k is the Biot number. The temperature of
gas phase hg is assumed constant in Section 3.
3.2. Temperature distribution

Consider the problem of heat transfer (6), (7), (9), and
(13) for a rigid film (h = h0 = const) and a linear velocity
profile U = 2Y with V = 0. Using the method described
in [32], we obtain the exact solution to the problem of tem-
perature distribution:



-1 1 2 30
x/L

0

0.2

0.4

0.6

0.8

1

1.2

(T
-T

0)
/Δ

T

Bi=0.005

Bi=0.05

Bi=0.1

Bi=1

Fig. 3. The effect of Biot number on the temperature distribution on the
film surface, FC-72, Tg = T0 = 30 �C, L = 10 mm, u = 0�, Re = 4.9,
s = 0.025 kg/s2 m.

E.Ya. Gatapova, O.A. Kabov / International Journal of Heat and Mass Transfer 51 (2008) 4797–4810 4801
hðX ; Y Þ ¼ 1þ 1

Bi
� Y

� �
ePegðX Þ

þ hg �
X1
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GiwiðY Þ expð�n2
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where wiðY Þ ¼
ffiffiffiffi
Y
p

J�1=3
2
3

ffiffiffiffiffiffiffiffiffi
2ePe
p

niY
3=2

	 

; niði ¼ 1; . . . ;1Þ

are the eigenfunctions and eigenvalues of the Sturm–Liou-

ville problem; J mðnÞ ¼
P1

k¼0

ð�1Þk n
2ð Þ

mþ2k

k!Cðmþkþ1Þ is the Bessel function

of the first kind and CðkÞ is the gamma function. The coef-
ficients Gi are determined from the condition of orthogo-
nality of the eigenfunctions:

Gi ¼
2ni

owi
on ð1Þ
� �

n¼ni

owi
oY ð1Þ � wið1Þ

o2wi
oY on ð1Þ
� �

n¼ni

����
����
:

The series in sum (14) is rapidly convergent and summable.
Note that solution (14) is valid for any function g possess-
ing an integrable generalized derivative. In the case of
Bi ? 0, the heat transfer problem (6), (7) and (9) should
be considered with the thermal insulation boundary condi-
tion at the film surface hY ðX ; �hðX ÞÞ ¼ 0 instead of (13).

The temperature distributions on the film surface of FC-
72, calculated according to (14) for different liquid flow
rates, are presented in Fig. 2. The position of the maximum
of the temperature is replacing downstream with the
increasing Re number. The influence of the convective heat
transfer mechanism is much more prominent for relatively
high values of the liquid Reynolds number. The thermal
entry length also increases with increasing Re. The thermal
entry length is defined as the average distance between the
beginning of a heater and the point where the thermal
boundary layer reaches the film surface. This point corre-
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Tg = T0 = 17 �C, L = 6.7 mm, u = 0�, a = 20 W/K m2, Reg = 242.8, and
the heater is situated from 0 to 1 along the x-axis.
sponds to the onset of the approximately linear rise of tem-
perature (Fig. 2). The importance of both conductive and
convective heat transfer in the liquid film is shown. The
temperature reduction downstream of the heater is
explained by heat transfer between the surface of the liquid
film and the gas flow. The influence of the heat transfer
between the film surface and the gas flow on temperature
of the liquid is shown in Fig. 3. A variation of the Biot
number in the range 0.005–1 corresponds to the variation
of heat transfer coefficient on the film surface from
1.02 W/m2 K to 203.1 W/m2 K. As the Biot number
increases, this corresponds to increasing of intensity of heat
exchange with gas phase, the maximal film surface temper-
ature decreases. The temperature reduction is more notice-
able at smaller Re numbers (Fig. 2) and at greater Bi

number (Fig. 3).

3.3. Film deformation

The non-zero temperature gradient on the film surface
leads to the thermocapillary so that the film is deformed
by the Marangoni stresses. If the temperature distribution
on the liquid surface is known, for instance from the ana-
lytical solution (14) or from experimental data, it is possi-
ble to find the values of the deformations.

The equation of continuity (5) and the kinematic condi-
tion (10) give the conservation of mass condition:

o

oX

Z �hðX Þ

0

UðX ; Y ÞdY ¼ 0: ð15Þ

The pressure from (4) with boundary condition (11) can be
expressed as

P ¼ �C�1�hXX þ qgh0ð�h� Y Þ cos u=�p:

Substituting this expression for pressure into Eq. (3) and
integrating it twice gives the differential equation for the
film thickness �hðX Þ:
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�h3

3
eC�1�hXXX � e

qgh0

�p
cos u�hX þ

qgh0

�p
sin u

� �

þ
�h2

2
eðT�Ma�hX Þ ¼ ec; ð16Þ

where c is dimensionless flow rate.
Assume that �hðX Þ ¼ 1þ h1ðX Þ, where jh1j � 1. Linear-

izing Eq. (16) and neglecting the term eh1Ma�hX ¼ Oðe2Þ in
the left-hand part (i.e., assuming that Ma� 1), we obtain
the following linearized equation:

h1XXX � C
qgh0

�p
cos uh1X þ 3C Tþ qgh0

e�p
sin u

� �
h1 ¼ f ðX Þ;

ð17Þ
where f ðX Þ ¼ 3Cðc� T=2þMa�hX=2Þ � qgh0C sin u=e�p.
The thermocapillary force cannot be neglected in the
right-hand section. This term eMa�hX=2 ¼ OðeÞ is of a lower
order than O(e2). For a horizontal channel, c = 1, T = 2,
and Eq. (17) simplifies to

h1XXX � C
qgh0

�p
h1X þ 3CTh1 ¼

3

2
CMa�hX : ð18Þ

A solution to Eq. (17) is given by a convolution of the func-
tions F(X) and f [33]:

h1ðX Þ ¼
Z 1

�1
F ðX � nÞf ðnÞdn: ð19Þ

Here, F(X) is the fundamental solution of the correspond-
ing homogeneous equation. The form of the fundamental
solution depends on the sign of the discriminant of the
characteristic polynomial:

s3 � C
qgh0

�p
cos usþ 3C Tþ qgh0

e�p
sin u

� �
¼ 0: ð20Þ

The roots of the polynomial can be easily determined by
Cardano’s method. If the discriminant is positive, the latter
polynomial has a single real root and two conjugated com-
plex roots. Therefore, the fundamental solution to the left
origin is a periodic function. In terms of the ‘‘zeroth dis-
criminant”, all roots are real and two coincide. For the neg-
ative discriminant, all roots are real and have different
values. In the last two cases, the fundamental solution is
not a periodic function. The details of the fundamental
solution can be found in Appendix A.

Now, the case of the positive discriminant will be analysed
in order to clarify the occurrence of possible perturbations.

We have � qg
3r0

cos u
� �3

þ 3
2r0h0

s
h0
þ qg sin u

� �� �2

> 0.

Denoting the capillary length as lr ¼
ffiffiffiffi
r0

qg

q
, the condition of

the positive discriminant is equivalent to the following
inequality [16]:

sþ qgh0 sin u > qgh0

2

3

h0

lr

cos u
3

� �3=2

: ð21Þ

Introducing an associated Bond number
Bo� ¼ qgh0 cos u

r0=h0
¼ Bo � cos u, which characterizes the ratio

of gravitational forces to surface tension forces, condition
(21) can be rewritten as
sþ qgh0 sin u >
2

9
ffiffiffi
3
p

ffiffiffiffiffiffiffiffi
Bo�
p

qgh0 cos u: ð22Þ

If the film driving forces (shear stress and gravity) overbal-
ance the hydrostatic forces, damped perturbations or ‘‘rip-
ples” of free surface will exist upstream of the bump.
Perturbations always exist when the inclination angle of
the channel is high (u � 90�). A low Bo* number indicates
that surface tension forces is important, this is exemplified
by the appreciable ‘‘capillary” perturbations showed in
Fig. 4, where Bo* = 7.58 � 10�4, Re = 0.04, film thickness
h0 = 24 lm. Under conditions of microgravity, the damped
perturbations of the free surface take place at any s > 0
(Fig. 5b). The fundamental solution and expression for film
thickness take the forms:

F ðX Þ ¼ ðvðX Þ expð�cX Þ þ 2vð�X Þ expðcX=2Þ
� cosðp=3þ

ffiffiffi
3
p

cX=2ÞÞ=3c2;

h1ðX Þ ¼
Z 1

�1
F ðX � nÞ3CMa�hX=2dn;

ð23Þ

where c ¼ ð3CTÞ1=3.
A trough of up to 5–10% of the initial film thickness was

detected upstream of the bump for locally heated falling
liquid films [31,34], which qualitatively validates the
obtained result.

Fig. 5 and expressions (23) clearly demonstrate the ther-
mocapillary character of film thinning in the vicinity of the
lower edge of the heater. The calculated relative film thick-
nesses along the channel for different heat-transfer coeffi-
cients and for different tangential stresses are presented in
Fig. 6 and 7. The positive temperature gradient in the hea-
ter area is the cause of the tangential stress induced by ther-
mocapillary forces, and is directed against the main flow.
Therefore, an increase in film thickness is observed in the
heating area. Downstream from the heater, the tempera-
ture of the film surface decreases (Figs. 5–7) for compara-
tively small Reynolds numbers. The Marangoni force is
directed streamwise in this area, causing a decrease in the
film thickness. The minimum film thickness occurs under
the maximal Biot number/heat-transfer coefficient, because
for this case the absolute value of surface temperature gra-
dient is maximal. This region is the riskiest one for a film
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breakdown. A variation of Bi = 0.003; 0.03; 0.3 corre-
sponds to a = 23.6; 236; 2360 W/m2 K, respectively. The
position of the thermocapillary bump is determined by
the thermal entry length.

The damped upstream perturbations of free surface are
missing in Fig. 7 since condition (21) is not satisfied (i.e.,
the film driving force induced by gas flow is suppressed
by hydrostatic forces). For a constant Re number, an
increase in the tangential stress s (corresponding to a
growth of the gas flow rate) leads to a decrease of the initial
film thickness, which enhances the thermocapillary effect.
This calculation predicts thermocapillary thickening of up
to 30–40% compared with the initial film thickness at low
rates of heat transfer to the gas phase. A thermocapillary
bump of analogous size to the order of magnitude has been
observed in experiments for locally heated falling liquid
film under gravity along a vertical plate [31,34].

The linear theory is applicable for relatively small values
of the Marangoni number (i.e., for relatively small heat
fluxes). It was shown in [11] that for heat flux densities
under 2 W/cm2, linear theories agreed with the experimen-
tal data and with direct numerical simulation of film thick-
ness for gravity-driven liquid films.

4. Evaporation effect

4.1. Formulation

The problem described in Section 3 does not account for
the effect of evaporation. The heat transfer to gas has been
approximated using a constant Biot number. However,
heating and evaporation of the liquid produce heat and
mass transfers at the liquid–gas interface. Since a heated
shear-driven liquid film with relatively small initial thick-
ness (�100 lm) is examined, which is subjected to heat
fluxes up to 10–50 W/cm2, the process of evaporation will
play a significant role and must be considered. On the other
hand, one of the peculiarities of the modelling problem is
local heating. This brings up the question: How do evapo-
ration processes influence global heat transfer and its
enhancement? In order to answer this question, the heat
and mass transfer problem for shear-driven films is consid-
ered in this section. We do not concern ourselves with the
problem of film deformation due to evaporation and ther-
mocapillarity; nevertheless, some comments on film defor-
mation will be provided at the end of the section.

It is assumed that the gas velocity is 2–3 orders of mag-
nitude greater than the liquid velocity, and that the operat-
ing regime is laminar in both the gas and liquid phases.
Experimental investigations of isothermal shear-driven
liquid films justify that for small liquid and gas flow rates,
the film surface is smooth throughout the length of the
channel. Furthermore, an initial section of smooth film
always exists [30]. Accordingly, this theoretical investiga-
tion is considered in the framework of such flow regimes
with velocity profiles for laminar co-current parallel
streams (1), (2) and with non-deformable film surfaces
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(Section 2). It is reasonable to assume that the total mass
flow rate of evaporated liquid is much lower than the total
mass flow rate of liquid film. Also, evaporated substance is
a small impurity in gas, which scarcely affects gas thermo-
dynamic properties. These last two assumptions may cause
a limitation on the intensity of heating.

Calculations are carried out for water (with relatively
high latent heat) and air (with a relative humidity of 0.2),
similarly to the working liquid and gas, which have been
used in experiments. The gas is considered to be ideal
and incompressible. The physicochemical and transport
properties of the gas phase are considered to be uniform,
and are computed for fixed temperature, pressure and
given relative humidity by means of mixing rules [35] appli-
cable to any multi-component mixture (see Appendix B).
The physicochemical and transport properties of the liquid
film are taken at the fixed initial temperature.

We consider here the 2D heat and mass transfer prob-
lem for rigid liquid film and gas flow in a microchannel
with a local heater. The convective terms in the energy
equations and convection–diffusion equation are taken into
account:

u
oT
ox
¼ a

o2T
oy2

; ð24Þ

ug

oT g

ox
¼ ag

o2T g

oy2
þ

lg

qgcg
p

oug

oy

� �2

; ð25Þ

ug

oC
ox
¼ D

o2C
oy2

: ð26Þ

The enthalpy diffusion term is negligible in the energy
equation for the gas phase [23]. The impact of viscous dis-
sipation on film temperature has been estimated and turned
out to be insignificant, except for some temperature dis-
crepancy observed in the gas phase (see Fig. 8). This is
due to the fact that drops in temperature during the gas
phase are small in comparison with temperature drops in
liquid films. The results presented below take into consider-
ation the dissipative term in equation (25). It should be
noted that in microchannels, the effects of viscous dissipa-
tion can be important even under laminar flow [36].

Let us now formulate the boundary conditions. A con-
stant initial temperature is given

lim
x!�1

T ðx; yÞ ¼ lim
x!�1

T gðx; yÞ ¼ T 0: ð27Þ

At the bottom wall, local heating is specified by the con-
stant heat flux at the heater area:

�k
oT
oy

����
y¼0

¼ q0ðvðxÞ � vðx� LÞÞ: ð28Þ

The energy balance at the gas–liquid interface is described
by

�k
oT
oy

����
y¼h

þ kg

oT g

oy

����
y¼h

¼ �r
1

1� C�=qg

D
oC
oy

����
y¼h

; ð29Þ
where the mass flux J ¼ � 1
1�C�=qg

DoC
oy

���
y¼h

exchanged at the

interface is given by applying Fick’s law and supposing that
the interface is impermeable to dry gas.

Cjy¼h ¼ C�ðT Þ: ð30Þ

Eq. (30) is the equilibrium condition and has the following
meaning. It is known that temperature and gas pressure
variations influence the vapor concentration at the gas–
liquid interface. The problem formulation assumes gas
pressure variation to be insignificant. Therefore, its effect
on water vapor concentration variation is negligible, so
Henry’s law is valid. An equilibrium concentration at the
surface of the evaporating liquid is supposed to be linearly
dependent on surface temperature C*(T) = C0 +
C1(T(x,h) � T0). For given temperatures T0 and T1, using
the relative humidity of air, and gas total pressure, which
is equal to normal pressure, we can find water vapor con-
centrations with the ideal gas law using saturated vapor
partial pressure tabulations. Finally, we determine coeffi-
cients C0 and C1 by considering linear approximations of
the equilibrium concentration on temperature:

C0 ¼
p0Mv

RT 0

; C1 ¼
p1Mv

RT 1

� C0

� ��
ðT 1 � T 0Þ:

Thus, three simplifications have been made to obtain
boundary condition (30) out of the equilibrium state equa-
tion: (1) equilibrium concentration depends on temperature
only; (2) the ideal gas law is valid; (3) vapor concentration
at the gas–liquid interface depends linearly on temperature.
The latter assumption is considered for simplicity; gener-
ally, a polynomial dependence can be considered.

As an example, for a relative air humidity of 0.2, an ini-
tial temperature of T0 = 21 �C and a possible temperature
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deviation T1 � T0 = 30 �C, these coefficients have values
C0 = 3.66 � 10�3 kg/m3 and C1 = 4.55 � 10�4 kg/m3 K
for the water–humid air system. These values are used in
most of the calculations presented below.

The upper wall y = H is considered adiabatic:

oT g

oy

����
y¼H

¼ 0 ð31Þ

and no mass flux is assumed on the upper wall:

oC
oy

����
y¼H

¼ 0: ð32Þ

Eqs. (24)–(32) are changed to dimensionless forms and
approximated by difference schemes. Two systems of equa-
tions are obtained with tridiagonal matrices connected by
boundary conditions, which can be efficiently solved itera-
tively by the sweep method. The numerical code is verified
by the variation of mesh points and is tested by comparison
with analytical solutions (Section 3). It is also in excellent
agreement with experimental and numerical data for a
gravity-driven liquid film of 25% ethyl alcohol in water
with a thermal insulation boundary condition on the gas–
liquid interface [11].

As long as the model implies that the film surface is non-
deformable, it is necessary to verify a mass flow rate value
of evaporated vapor, which is calculated as

CeðxÞ ¼
Z H

h0

ugðyÞCðx; yÞdy:

It is reasonable to determine Ce at the end of the channel.
This value depends on different flow parameters, such as
the film and gas Reynolds numbers, heat flux, heater size,
and channel height. We expect the model to be valid for
Ce/C 6 0.2.

4.2. Transport phenomena

To illustrate the effects of liquid Reynolds numbers on
the bottom wall and interfacial temperatures, Fig. 9 pre-
sents the axial distributions of TW and TI, where flow
regimes with Re equal to 3 and 10 correspond to film thick-
nesses of 76.6 lm and 127.7 lm, respectively. The influence
of convective heat transfer in the liquid film is becoming
noticeable with increasing Re, which results in an increase
of the thermal entry length. The enhancement of gas veloc-
ity decreases the value of film thickness and increases liquid
velocity, resulting in a reduction of wall and interfacial
temperatures. The latter is explained by convective heat
exchange between the liquid and gas streams and evapora-
tion (Fig. 10). A similar situation takes place with decreas-
ing the channel height.

Now, we analyze the enhancement of heat transfer from
a local heat source. Fig. 11 demonstrates the contribution
of different heat transfer mechanisms in the cooling of
the local heater. Calculations are performed for three cases:
1 – only convection to the liquid film exists; 2 – convection
to the liquid and gas phases takes place; 3 – evaporation
and convection to the liquid and gas takes place. The pres-
ence of evaporation decreases the heater temperature by
25.4 �C under these particular conditions. All three trans-
port phenomena are important for relatively thin films,
and the thermal entry length is a determining factor for
heaters with finite length. Intensive evaporation starts
when the thermal boundary layer reaches the film surface.
Our calculations reveal that the thinner the film, the shorter
the thermal entry length. The latter is proportional to
PrRe4/3, at least for gravity-driven films [37,38]. Also, the
evaporation rate depends on heater length. This is illus-
trated in Fig. 12, where the thermal entry length is long
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enough, with the result that the heater is mainly cooled by
convection to the liquid film.

We have estimated the heat flux limit for the water–
nitrogen system and for chosen wall temperature of
TWmax = 80 �C depending on initial film thickness h0 and
heater length L. With reference to Fig. 10a, in Fig. 13 it
can be seen that for flow regimes with Ce/C < 0.1, the
threshold heat flux increases with an increase in both liquid
and gas Reynolds numbers. The film thickness within 40–
60 lm appears to be a critical region where the evaporation
process markedly affects the film dynamics. Of course, not
only film deformations, but also the change in liquid prop-
erties such as viscosity, heat of vaporization, etc., are
important for heat transfer enhancement. Therefore, our
subsequent works will be devoted to investigation of
shear-driven liquid films with low latent heat of
vaporization.

4.3. Biot number

Usually, a constant Biot number is used to study the
instability problems of heated liquid films [12–15]. In order
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to improve the understanding of the interfacial heat trans-
fer, we calculate the heat transfer coefficient at the gas–
liquid interface using Newton’s cooling law:

aðxÞ ¼ �k
oT
on ðx; hÞ

T ðx; hÞ � T 0

:

The Biot number as a function of parameters of the flow
and spatial variable is found as

BiðxÞ ¼ aðxÞh=k ¼ �
oT
on ðx; hÞ

T ðx; hÞ � T 0

h:

Fig. 14 and 15 demonstrate the behaviour of the Biot
number and heat transfer coefficient versus spatial vari-
ables and liquid and gas Reynolds numbers, respectively.
The dependence of the Biot number and heat transfer coef-
ficient on the longitudinal axis has a sectional-hyperbolic
character. The break of the curves in the vicinity of the
lower edge of the heater is caused by the start of the
temperature reduction. Such a variable Biot number can
be substituted to Newton’s cooling law (13) in order to de-
fine a film deformation in the lubrication-type approach.

In the heater region for Re = 0.5, a variation of Biot
number in the range from 0.75 to 0.16 takes place that cor-
responds to a variation of the value of heat transfer coeffi-
cient on the film surface from 13563 W/m2 K to 3018 W/
m2 K. For Re = 1, the variations of Bi and a are from
1.01 to 0.24 and from 13206 W/m2 K to 3125 W/m2 K,
respectively. For Re = 2, these variations are from 1.30 to
0.35 and from 12319 W/m2 K to 3330 W/m2 K.

Note that the constant average Biot number for
analytical solution (14) approximating the temperature
distribution in a heater area can be found minimizing
the difference between film surface temperatures, min06x6L
jT �I ðx; hÞ � T Iðx; hÞj. Here, T �I ðx; hÞ and TI(x,h) are gas–
liquid interface temperatures corresponding to an exact
solution (14) and to a numerical solution of (24)–(32),
respectively. Though the average value from the beginning
of the heater to the point of stabilization of the heat trans-
fer coefficient gives a rather good agreement between tem-
peratures T �I ðx; hÞ and TI(x,h) in the heater area, outside of
the heater, the temperature T �I ðx; hÞ reduces drastically.
This is associated with overestimation of the value Biot
number downstream from the heater.
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4.4. Comparison with experimental data

Available experimental investigations with local heating
of a liquid film are described in [30]. The test section was set
horizontally, and the heater of 22 � 6.55 mm size was
embedded into a thermostabilizing copper block.

Water and air with a relative humidity of �0.2 were used
as the working liquid and gas, respectively. Experiments
were carried out at atmospheric pressure. The initial tem-
perature of the gas was equal to ambient temperature, or
22–25 �C, and the channel height was 2 mm.

Temperature distributions at the film surface measured
by an infrared scanner are compared with numerical data
(Fig. 16). Heat flux has a noticeable effect on streamwise
temperature distribution at the film surface. The main dif-
ficulty is that the temperature (heat flux) distribution at the
experimental heater wall is unknown. This distribution
depends on many factors, such as the shape and size of
the heater, the properties of the heater and channel materi-
als, liquid properties, etc. The most consistent approach
would be to solve a fully coupled problem including the
thermal conduction in the heater. Keeping in mind that
there are temperature stabilizers outside of the heater, we
choose the boundary condition on the bottom wall for cal-
culations as follows:

koT
oy

���
y¼0
¼ �qðxÞ; x0 6 x 6 x0 þ L;

T ðx; 0Þ ¼ T 0; otherwise;

8<
:
where qðxÞ ¼

q0 � x�L=2
L=2

��� ���n; 0 6 x 6 xm;

q0 � x�xm
L�xm

��� ���2; xm < x 6 L:

8><
>:

The heat flux distribution incorporates a fall in flux value
due to the heating of the liquid film, which qualitatively
corresponds to numerical simulations of heat flux distribu-
tion for locally heated gravity-driven films [38]. In the sim-
ulations, we assume xm = L/3, n = 26.
-5 50 10 15 20
x, [mm]

20

22

24

26

28

T
, [

ºC
]

1

2

3

4

Heater

Fig. 16. Temperature at the film surface averaged over the heater width,
Re = 8.5, Reg = 534, 1 – q0 = 1.01 W/cm2, 2 – 1.88 W/cm2, 3 – 3.04 W/
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Calculations satisfactorily describe the maximal surface
temperature values, TImax, difference forms �0.3 �C
(Fig. 16), and predict maximal water–air interface temper-
ature position at the bottom edge of the heater. Such a
TImax position has been shown in experiments and numer-
ical investigations of gravitationally falling liquid films [11].
In the experimental data [30], the maximum surface tem-
perature is located upstream of the bottom edge of the hea-
ter. Most probably, this discrepancy can be due to the
boundary condition disagreement. In view of the fact that
the measured film surface temperature in crosswise direc-
tion of heater is quit non-uniform even for low heat fluxes
and for smooth film [30]. Unfortunately, we cannot give
any information about the real experimental condition in
the heater. Nevertheless, the fact of the temperatures dis-
crepancy may be attributed to the 3D deformation and
thinning of liquid films [16,30] due to Marangoni forces
at the end of heater, along with the intensive evaporation
in this area [39]. This non-uniform evaporation effect may
result in thermal Marangoni flow. More detailed experi-
ments with greater measurement accuracy are needed to
verify the experimental results in Fig. 16 and to validate
the proposed theoretical model.

5. Conclusions

In this study we consider the problem of locally heated
liquid film flow sheared by gas flow in a mini/microchan-
nel. Heat transfer and thermocapillary film deformation
problems for weakly heated liquid films have been treated
in the framework of a one-sided 2D model. The exact
solution for the heat transfer problem obtained for a lin-
ear velocity profile shows that the influence of a convec-
tive heat transfer mechanism is much more prominent
for relatively high values of liquid Reynolds number,
starting with estimating value of film Reynolds number
Re = 4.5. Thermocapillary forces are shown to lead to
the film thinning in the vicinity of the heater’s lower edge
and to the formation of a liquid bump in the vicinity of
the upper edge, and additional damped perturbations of
the free surface may occur upstream of the bump. A cri-
terion is found that indicates that these ‘‘ripples” always
exist under microgravity conditions or for vertically situ-
ated channels, which is in qualitative agreement with the
experimental results.

The problem of heat and mass transfer has been exam-
ined in the framework of a two-sided 2D model. The model
includes the energy equations for liquid and gas phases,
and the convection–diffusion equation with the appropriate
boundary conditions. All the equations consider the Peclet
numbers O(1) or larger and include the convective terms
and expected to be valid for laminar flows in both the
liquid and gas phases (for moderate Reynolds numbers).
The evaporation effect on heat transfer has been analyzed
numerically, and it is shown that evaporation dramatically
changes the temperature distribution, and hence, thermo-
capillary forces on the gas–liquid interface, even when
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the mass flow rate of the evaporated liquid is much lower
than the mass flow rate of the liquid film. The thermal
boundary layer has been found to play an important role
in evaporation intensity, resulting in the cooling of the
local heater by shear-driven liquid film. The thermal entry
length increases with increasing film thickness. Film thick-
ness and the emergence of the thermal boundary layer can
be regulated by gas flow rate/velocity or channel height.
The temperature distribution at the film surface measured
by an infrared scanner has been compared with numerical
data, and the maximal surface temperature values are in
good agreement.

The dependence of the Biot number on flow parameters
and spatial variables was obtained numerically. The Biot
number, as a function of the longitudinal axis, has a sec-
tional-hyperbolic character. Hence, we have showed that
approximation by constant Biot number can be a source
of high uncertainty when studying the non-linear dynamics
of locally heated liquid films.

On the whole, the heat transfer from liquid to gas flow
and evaporation enhance the heat removal from the local
heater, making shear-driven liquid films more suitable for
cooling applications than gravity-driven films. According
to the numerical results, all heat transfer mechanisms –
convections to the liquid and gas phases as well as evapo-
ration – are important for a global cooling effect.
Acknowledgements

The authors gratefully acknowledge support of this
work by RFBR (No. 05-08-65426) and CRDF (No.
RUE1-2846-NO-06). E.G. acknowledges the hospitality
of the Microgravity Research Center at ULB, as well as
support from INTAS, Grant No. 05-109-5022 and from a
Grant by the President of the Russian Federation No.
MK-2964.2007.8. We thank V. Ajaev who has read the
manuscript and made valuable suggestions.
Appendix A

s1 ¼ �c; s1;2 ¼ c
2
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polynomial (20), where
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s !
X ¼ � qgh0C
3�p cos u

� �3

þ 3
2
C Tþ qgh0

e�p sin u
� �� �2

is the dis-

criminant of polynomial (20).
The fundamental solution has the following forms:

F ðX Þ ¼ 4

9c2 þ 4b2
vðX Þ expð�cX Þ þ vð�X Þ exp

c
2

X
� ��

� cosðbX Þ � 3c
2b

sinðbX Þ
� ��

; when X > 0;

F ðX Þ ¼ 4

9c2
vðX Þ expð�cX Þ þ vð�X Þ exp

c
2

X
� ��

� 1� 3c
2

X
� ��

; when X ¼ 0;

F ðX Þ ¼ vð�X sgns1Þ expðs1X Þ
ðs1 � s2Þðs1 � s3Þ

þ vð�X sgns2Þ expðs2X Þ
ðs2 � s1Þðs2 � s3Þ

þ vð�X sgns3Þ expðs3X Þ
ðs3 � s1Þðs3 � s2Þ

; when X < 0:
Appendix B

qg ¼
Mgpg

RT 0

kg=m3; mv ¼ 0:2; ma ¼ 1� mv ¼ 0:8

Mg ¼
1

mv=Mv þ ma=Ma

kg=mol; Mv ¼ 18� 10�3 kg=mol;

Ma ¼ 29� 10�3 kg=mol

cg
p ¼ mvcv

p þ maca
p ¼ 4185½0:24ma þ 0:46mv
 J=kg K

D ¼ 2:05� 10�5 T 0

273

� �2:072

m2=s

r ¼ 4185ð597� 0:56ðT 0 � 273ÞÞ J=kg

kg ¼ ka þ 4:76� 10�3 mv

ma

W=m K

lg ¼
lvX v

X v þ X aav;a

þ laX a

X a þ X vaa;v

kg=m s;

where X a ¼ ma

Mg

Ma

; X v ¼ mv

Mg

Mv

;

av;a ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
lv=la

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ma=Mv

4
p� �2

ffiffiffi
8
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þMv=Ma

p ;

aa;v ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
la=lv

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mv=Ma

4
p� �2

ffiffiffi
8
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þMa=Mv

p :
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